8.电解液缺失对电芯性能的影响:本文有些仓促,但是就这个主题而言,或许再等半年,文武也难有新的见解,所以就急着写出来啦!文章属于扫盲性质,文武也是半盲,所以“高人”不要读文章,也不要留言,谢谢! 1)“疾在腠理,汤熨之所及也;在肌肤,针石之所及也;在肠胃,火齐之所及也;在骨髓,司命之所属,无奈何也。”这是中学课本中,《扁鹊见蔡桓公》中的一段话;疾在腠理、在肌肤、在肠胃、在骨髓,形象的描述了疾病的四个程度。电解液缺失,就好比电芯得了病,得了病,就必然有重有轻。电解液缺失对电芯性能的影响,何为轻何为重?轻者如何重者如何?这就是本文主要讨论的问题。另外,由于不同材料、不同工艺所对应的吸液量是不同的,所以本文仅是以电解液注液量的“略少、少、严重少”这三个定性的词语来形容电解液的缺失程度;定量来说的话,由于种种原因,文武目前还没有这个能力。“略少”时的情况。 2)其实即使是略少,电芯也已经是不良品了。电解液少,既有可能是注液量少了,也有可能是老化时间短造成极片浸润不充分,但本文不过多讨论这一问题。电解液略少的电芯,如同潜伏着的谍战人员一样,不容易被发现。这个时候,电芯的容量和内阻都是正常的,检测出电解液略少电芯有三类方法:拆电芯、称重、测试。 3)拆电芯:,此时满充负极会出现类似于下面图片的样子:
(1)拆开属于破坏性试验且一次只能检测一个电芯,虽然可以最为直观和准确的确定问题,但实际用此方法筛选电芯的可能性却几乎没有。 *称重:这一方法准确性较低,因为极片、铝塑膜等也会有重量差异;电解液既然是“略少”,那么实际每个电芯的保液量也就不会差距很大,这样其他材料的重量差异,很可能大于电解液重量的差异。当然,可以通过注液时实测每个电芯的注液量或者保液量来准确的、及时的得知问题电芯,但是与其对全电芯称重,不如增加注液设备的准确性和优化工艺,从而治标治本。 *测试:这个是问题的重点,用何种测试方法能够筛选出电解液“略少”的电芯,等价于电解液“略少”的电芯会有何种异常。目前文武仅知道两种方法可以测出容量、内阻皆正常的,但是电解液却略少的电芯。这两个方法分别是:循环、倍率放电平台。 *循环,可以说是检查锂离子电池电性能的终极方法,纵观锂离子电池材料和制成时的近乎无数种的异常,绝大多数的最终影响都是两个字:循环。电解液略少时,容量或是说正极克发挥是正常的,前几十次循环的话,容量并不会明显衰减;随着电解液缺失的程度的加重,能够保持较高容量保持率的循环次数会逐渐减少;或者说,电解液“略少”中电解液相对较多的电芯,可能会以正常容量衰减速率循环几十次甚至上百次才会明显衰减;电解液“略少”中电解液相对较少的电芯,可能循环十次二十次容量就开始明显跳水。但不论在容量跳水前电芯能按正常容量衰减速度循环多少次,跳水开始后,电芯的容量都会快速衰减;衰减过程中,电芯的表现是能充入容量,但是放出容量较低(很像气数已尽的人“有进气儿没出气儿”的样子哦),如果做充电容量/放电容量图的话,跳水期间二者的比值会明显高于1;跳水之后,电芯的容量并不会马上降为0,而是相对稳定的维持在其初始容量的20%~40%中的位置一段时间;再往后,文武就没有测过了。以下是一个因电解液不足而容量跳水的电芯的循环容量曲线和C/D曲线,循环性能的降低,是电解液缺失的一个必然结果,只要电解液的量足够维持电芯循环到规格书中规定的循环次数,就可以认为电解液是充足的。但是,循环性能无法作为筛选电解液量少的电芯的手段,原因很简单,不再多说。
(2)倍率放电平台,这里所说的平台,一定要是相对较高倍率的平台,0.2C/0.5C是看不出来差异的。文武比较了同设计下,实际平均保液量分别为0.002g/mAh和0.0023g/mAh两批电芯的0.5C/3.6V、1C/3.6V和2C/3.4V的平台容量,二者0.5C平台几乎一致,但电解液充足的第二组1C和2C平台容量要高于电解液不足的第一组约8%(文武做的是容量型卷绕软包电芯,倍率型或者叠片电芯所用测试倍率肯定要再高才可以)。与全检称重、测循环、拆电芯相比,用高倍率放电对比平台容量这一方法预测电解液略少的电芯,可行性显然更大。但问题是,对于制成较差的厂子,高倍率下,电芯平台容量本身就可能相差很多,这样的话定标准是很难的。而对于一致性很好的厂子来说,保证注液量和吸液量又是很简单的问题。实在是让人纠结啊。
4)对于电解液“略少”的电芯,由于正极克发挥还是足够的(克发挥不足,在本文叫做“严重少”),因而最开始极片可能仅是比较干,但是还没有析锂。但随着循环的进行,析锂会越来越严重。“少”时的情况 5)与“略少”相比,“少”的时候,问题就要简单的多了。依照文武的定义来说,当电解液少到让电芯高内阻的时候,就可以称呼为“少”了。这个时候,电芯的正极克发挥依旧是正常的,但是循环、倍率平台容量都要明显的差于“略少”的情况。 6)与刚才所说的“略少”和后面眼谈到的“严重少”相比,“少”是一个可遇不可求的中间态。文武是做样品的,这种中间态的情况在样品中,还真的没见过一次。不过有一次测110pcs量产电芯的自放电时(由于测了那批数据,才有了之前的《自放电浅析》),顺便关注了一下里面内阻较高、但是容量正常的电芯,发现的问题有: 7)平台容量低,即使是0.2C的平台容量,也要明显低于内阻正常的电芯,更不用说高倍率平台容量了。 *无法完成循环,这是对实际现象的描述,当文武测过这几个高内阻电芯的倍率后,将电芯搁置了几天,然后有了空余测试通道准备测1C循环,上下限保护电压分别为4.5V和2.5V,这时发现,不论是充电还是放电,通道都会马上进入保护(这种析锂电芯,此时处于高电压状态,但本文不多谈论此问题)。更换通道也没有改善后,测了一下电芯的重量,发现比正常电芯低0.5~1g,室外拆开电芯,全部起火! *由于电解液“少”的电芯,内阻已然偏高,而内阻基本是所有电池厂都会关注的参数,所以筛选出电解液“少”的电芯,并不难。需要再一次强调的是,电解液“少”的电芯,会遇到电解液“略少”的电芯的一切问题,同时也会增加一个问题:内阻偏高。“严重少”的情况 *抛开一切不看,电解液“严重少”时,最为明显的结果就是:低容。电芯的内阻往往是由电芯厂制定的,制成一般的话,偶有高内阻也可能出货,但是容量不足的话,可就完全没有补救的可能性了。 *处于“严重少”的电芯,克发挥、内阻、平台、循环等问题,将会一起爆发。当看到电芯低容且高内阻时,就很有可能是电解液“严重少”的情况;如果再与正常电芯对比一下重量,则可以几乎确认问题所在。此时,就不要拆电芯了,起火的可能性非常大。 8)如果将电芯分开来看的话,电解液“严重少”时还可以分为正极吸液不足和负极吸液不足这两个方面来看。当正极吸液不足时,没有足够的锂离子能够从正极脱嵌,但是负极吸液充足,只要是脱嵌的锂离子,就可以嵌入负极。结果就是正负极都很干,但是负极并没有析锂。当负极吸液不足、正极充足时,正极可以提供充足的锂离子给负极,但是负极没有办法接受,于是负极析锂。但不论是哪种情况,电芯的外在表现都是:低容、高内阻、低平台、低循环。电解液“严重少”的电芯拿去做循环,十次就可能掉10%的容量,且循环后由于严重析锂,电芯会变得异常的厚;最后还要重申一下本文的主旨。文章将电解液少按程度分为“略少”“少”“严重少”这三个程度,程度重的在有自己特有的问题的同时,也必然发生程度比其轻的全部问题。就好比人的某处染疾,严重的时候有严重时候特有的病症,但也必然同时拥有轻的时候的所有病症。
|