四、温度+充放电倍率+过充
1、温度:环境温度对于锂离子电池的性能、安全及寿命等特性影响明显。有研究认为锂离子电池适于在15~35℃的温度区间内工作。在实际应用中,一般通过各种热管理技术来调节锂离子电池的工作温度,从而延长锂离子电池的循环寿命并提高电池全生命周期的安全性。低温情况下电化学反应速率趋缓,电解液电导率下降,SEI 膜阻抗增大,锂离子传递阻抗增大,充放电工况下极化电压加大,因此,充电时易产生析锂现象,从而造成电池容量的不可逆下降,甚至引发安全风险;在较高温度下工作时,由于反应动力学原因(阿伦尼乌斯效应),锂离子电池电化学反应速率上升、内阻下降且容量有所增加;持续的较高温度会使得电池内部副反应加速,造成电解液氧化和分解并促进SEI膜的生成,造成容量不可逆损失及阻抗上升。锂离子电池工作过程中,由于其内部的电极和隔膜等部件的导热系数较低,电池单体内部会产生温度梯度,在大倍率及低温环境下温度梯度现象更加明显,这种空间温度分布差异性可能会加剧电流密度的非均匀分布,从而加速电池衰减。
2、充放电倍率:电流倍率同样会导致锂离子电池容量降低。充放电倍率的增大会加快高比能量锂离子电池容量衰减速率及欧姆内阻、极化内阻的增长速率,极化内阻的增长速率要高于欧姆内阻。充放电倍率对于电池组老化及一致性的影响主要表现在加速容量小的单体电池的老化。对于小容量电池,在高充放电倍率下,会较为频繁的发生过充电与过放电现象,进而加速小容量电池的容量衰减,形成正反馈。从而导致电池组可用容量减小,甚至因过充电过放电等现象存在热安全问题。高倍率的充放电循环所导致电池老化的机理主要为高倍率充放电时产生的扩散诱导应力所导致的正极活性材料损失;考虑到电池老化过程中正极活性材料体积分数的下降,会导致电极材料单位面积上的电流密度呈增大趋势,因此,高倍率充放电循环工况下电池老化将会表现为存在加速的趋势。
3、Dubarry等采用多种充放电倍率对复合正极锂离子电池进行了老化实验,结果表明大倍率充放电会加速电池性能衰退;对衰退结果分析后认为老化过程可分为2个阶段,第1阶段的容量损失来自于负极表面SEI膜生成所造成的活性锂离子损失,第2阶段的衰退来自于电极活性材料损失。Cheng等研究了NCM锂离子电池的老化特性,认为容量损失随循环次数增加而增大,在老化过程中伴随有正极材料结构损伤及负极SEI膜的生成。而Barcellona和Piegari通过珀尔帖抑制充放电过程中的温度变化,认为在一定电流倍率内及特定SOC条件下,电池老化与电流倍率无明显关系。Yang等通过包含副反应的电化学-热联合模型讨论了电池性能衰减与循环次数之间的关系,认为随循环次数增多电池老化将会出现拐点,即呈现从近似线性到非线性转化的过程,且后期非线性加速老化的原因主要来自于负极表面出现析锂。
4、过充对容量衰退的影响分析:因电池过充导致的电池容量衰退主要包括负极过充导致析锂、正极过充导致产气及电解液过充时副反应加剧。 1)当负极过充时,会发生析锂反应,导致金属锂沉积,在正极活性物相比于负极活性物过量的时候更容易发生。但是,在高倍率充电的情况下,即使正负极活性物的比例正常,也可能发生析锂现象。金属锂的沉积可能从以下几个方面造成电池的容量衰减:①导致电池中可循环锂量减少;②析出的金属锂与溶剂或电解质发生副反应,形成其他副产物,并消耗电解液,从而导致放电效率降低;③金属锂主要沉积在负极和隔膜之间,可能造成隔膜孔隙堵塞,导致电池内阻增加。 当正极活性物相对于负极活性物比例过低时,容易发生正极过充电现象。正极过充电主要通过电化学惰性物质的产生、氧损失等形式造成电池的容量衰减,由于破坏了电极间的容量平衡,会导致电池容量发生不可逆损失。同时正极反应释放的氧气还有可能会给锂离子电池的使用带来安全隐患。
2)若锂离子电池充电电压过高,将会导致电解液发生氧化反应,并生成不溶物 (如Li2CO3) 和气体,这些副产物会将电极微孔堵塞,阻碍锂离子的迁移,从而造成循环容量衰减变化。而且随着电解液的消耗,其传质能力减弱,会引起电池内阻增加。此外,若产生固体产物,还有可能会在电极表面形成钝化膜,这将增大电池极化而降低电池的输出电压。
|