10、为了增强铋基催化剂的性能,他们决定向铋中引入缺陷。这是因为催化剂中的缺陷可以有效调控其电子结构,改善对于中间体的吸附,从而增强选择性。同时,缺陷的引入还能产生更多的催化剂中不饱和位点,进一步增强性能。通过多次实验,他们发现可以利用激光辐照方法,合成一种非晶态的氧化铋前驱体,这种前驱体经过电化学重构之后,可以生成富含缺陷结构的金属铋催化剂。 1)这种催化剂不仅具有高活性,而且具有高甲酸选择性,非常容易进行批量化生产。
2)后来,他们发现由于电解质的缘故,导致所生成的甲酸多以甲酸盐的形式存在,同时浓度也比较低,而这将大幅增加后续的分离成本。因此,他们希望能直接实现高浓度纯甲酸溶液的大批量合成。为此,他们耗费将近一年的时间来做实验。起初,实验结果显示尽管可以获得纯甲酸溶液,但是甲酸的法拉第效率一直很低。
3)经过大量实验之后,课题组终于提高了甲酸的法拉第效率。不过,他们又遇到了新的问题:所设计的反应器稳定性较差。于是,他们耗费半年多时间进行改进,最终获得了较为稳定的电解池性能,并成功获得了高浓度的纯甲酸溶液。
4)目前,他们仅在实验室验证了上述结果。接下来,课题组会将整体系统进行进一步的放大,继续发展基于这一系统的实际应用。同时,他们将开发面积在 100cm2 以上的电化学反应器,并将其组装成电堆,真正实现纯甲酸溶液的大规模生产,推进电催化二氧化碳还原产甲酸的工业化应用。
5)另据悉,目前熊宇杰的论文总引用次数为 40000 余次,H 指数 100,曾入选科睿唯安全球高被引科学家榜单、全球前 2% 顶尖科学家榜单、以及爱思唯尔中国高被引学者榜单。这主要基于他在“多场多相催化化学”方面的成果,尤其是基于多场耦合和多相流动条件下的催化机制及其应用的成果。具体来说,他和团队曾创制了表界面结构可控的复合催化材料和杂化催化材料,实现了催化反应的光、电、磁、热等多物理场调控,发展了分子转化过程的能量耦合机制。同时,还曾设计可被模块化定制的仿生催化器件,实现了催化体系的传质和传能过程强化,发展了基于多相流动控制的应用系统。
|