改性(乳化)沥青设备

沥青拌合(再生)设备

沥青改性配套设备

谷朊粉设备

超高压压榨机

乳化机及胶体磨

环保设备

MVR蒸发器

岩沥青设备

湖沥青设备

如何降低锂电三元材料表面碱性?--2

 

二、结果与讨论

1. 烧结料的XRD分析图1为制备的NCM811材料的XRD图。从图1可知,不同温度及锂配比条件下制备的NCM811,均未出现杂质峰,各样品均为α-NaFeO2结构。( 006 ) /(102)及(108) /(110)晶面的分裂程度,通常可用于衡量层状二维结构的有序程度。

                  图1 样品1、样品2和样品3的XRD图 图1中,(006) /(102)及(108) /(110)两组峰分裂较明显,表明各样品均具有结晶程度良好的层状结构。高温条件下制备的样品,峰形更尖锐,表明结晶化程度更高。

2. 残余碱性杂质对比一般而言,采用高温低锂配比的烧结条件,制备的正极材料中碱性杂质残余会低于低温高锂配比条件所制备的样品。碱性杂质高,会导致材料使用过程中涂布浆料黏度的迅速上升,甚至出现“果冻”现象;此外,还会导致极片最大压实降低、循环过程中的鼓胀等一系列问题。制备的NCM811样品与购买的样品的碱性杂质含量对比见表2。

              表2 制备的NCM811样品与购买的样品的碱性杂质含量对比

3、从表2可知,尽管样品3选取了高烧结温度低锂配比加入量的工艺条件,制备的NCM811材料中碱性杂质碳酸锂残留的质量分数仍有1.22%,氢氧化锂有0.69%,高于购买的三元材料产品。从商品化的NCM111、NCM523和NCM622材料中碱性杂质含量变化的趋势可知:随着Ni含量的提高,碱性杂质残留含量也提高,且上升的程度高于线性增长。这是含镍三元材料固有的特性所致。烧结工艺的优化可降低碱性杂质残留量,但对NCM811这类高镍三元材料,必须通过其他手段来降低碱性杂质含量。

3. 降碱工艺及效果液相环境下的反应是实现碱性杂质的分离或转化的直接解决方案,其中,磷酸盐包覆是一种有效的改性方式。思路可转化为:以NCM811为基体、磷酸二氢铵为改性物质进行处理,通过在700℃的二次烧结,试图在NCM811材料表面形成稳定且可对材料表层进行保护的快离子导体层,起到消耗残留碱性杂质并提升材料性能的目的。此外,研究中对碱性杂质分离转化的方案是:以纯水淋洗的方式处理NCM811材料,利用碱性杂质可溶于水的特性,实现表面碱性杂质从体系的分离(样品 2-H2O)。不同降碱工艺得到的样品的碱性杂质含量见表3。

表3 不同降碱工艺得到的样品的碱性杂质含量

4、从表3可知,随着磷酸盐加入量的增加,NCM811表面残留的LiOH、Li2CO3的含量明显降低,表明在处理过程中,碱性杂质被消耗。与 Li2CO3相比,LiOH降低的幅度更大,原因可能是:

①在处理过程中LiOH向Li2CO3转化;

②在处理过程中,结构中的Li析出,在返烧过程中再次出现新的碱性杂质;

③复杂组分的碱性杂质存在反应先后次序等。具体机理,需要进一步实验研究。采用纯水淋洗方式制备的样品2-H2O,材料中的碱性杂质含量显著降低。

5、 降碱工艺处理前后样品的XRD分析图2为不同降碱工艺处理前后样品的XRD对比。

                         图2 不同降碱工艺处理后样品的XRD图

6、从图2可知,虽然处理前后碱性杂质含量变化明显,但各样品的晶体结构均未改变。结合表3数据分析,原因是加入的磷酸盐消耗了部分碱性杂质,并在700℃的返烧过程中形成了正极材料表层的磷酸盐掺杂,未形成新的物相。

7、降碱工艺处理前后样品的SEM分析样品2及经降碱处理后样品的SEM图见图3。

                        图3 降碱处理前后样品的SEM图

8、从图3可知,样品2表面可见明显的暗色区域,没有固定形貌,应为颗粒表面残留的、含锂的弱导电性碱性杂质;处理后的样品2-P2中,未观察到明显的深色暗色区域物质,同时,在颗粒表面形成的是一层较薄的包覆层。随着磷酸盐加入量的增加,颗粒表面的清晰程度逐渐降低,颗粒的边界也逐渐模糊。经水洗处理后的样品2-H2O,颗粒表面干净,边界清晰且颗粒间隙更大。从颗粒形貌的角度分析,两种处理方式都可实现碱性杂质的分离或无害化处理。

9、降碱工艺处理前后样品的电化学性能样品2及经降碱处理后样品的半电池倍率数据见图4。

                         图4 降碱处理前后样品的倍率性能图4

10、结合表3数据可知,碱性杂质残留量越高,半电池首次循环的库仑效率越低。水洗后样品的首次充放电效率最高,达到93.0%。对比不同处理工艺样品的倍率性能可知,样品2-P2和样品2-H2O表现出近似的倍率水平,略低于样品2。

11、从图3(b)、(e)中可观察到,样品2-P2和样品2-H2O的一次颗粒,表面较未处理前更光滑、干净,因此,倍率性能的小幅降低应源于颗粒表面可起到Li+导体作用的锂盐物质被去除。随着磷酸盐加入量的增加,样品的倍率性能下降。图3中,样品2-P5、样品2-P8一次颗粒表面及间隙中富集了暗色、絮状物质,表明此条件下的磷酸盐加入量过高,形成的物质电子导电能力弱,阻碍了正极材料体相的Li+传导。样品2及经降碱处理后样品制备的半电池的循环性能见图 5。

                          图5 降碱处理前后样品的循环性能

12、从图5可知,经过磷酸盐处理的样品,1C比容量较未处理的样品2明显降低,且随着磷酸盐加入量的增加,比容量分别降低约1mAh/g(样品2-P2)、27mAh/g(样品2-P5)和37mAh/g(样品2-P8),同时,容量保持率也低于样品2。磷酸盐处理样品在表面形成了不提供容量的惰性物质。磷酸盐处理的样品与未处理的样品相比,循环保持率变差证明处理过程中锂原子可能从结构中脱出。相比之下,纯水洗涤的样品2-H2O首次比容量由179.2mAh/g升至181.8mAh/g,循环100次的放电比容量仍有约171mAh/g,容量保持率达到94.1% 。放电比容量的提高可能是由于水洗大幅降低了NCM811材料表面残留的电化学惰性的碱性杂质含量,同时表面及颗粒间隙杂质的清除,使NCM811材料有足够的活性表面实现一次颗粒与电解液的充分接触。实验结果表明:碱性杂质的去除有利于提高正极材料的容量保持率。

 

发布时间:2024/9/22 7:38:16 查看:117次

上一条:研磨型高剪切微乳化机技术浅析 返回
下一条:如何降低锂电三元材料表面碱性?--3
上海企科设备工程有限公司 版权所有
电话:021-56637030 传真:021-66981091 移动电话:13816294308 联系人:俞鹤鸣 Email:13611843787@126.com
地址:中国 上海市沪太路5018弄梓坤科技园608号 邮编:200070 沪ICP备:20001609-1号